How come Reaktor's native upsampling displays both prering and nonlinear phase response?
could someone explain to me the mechanics of this implementation and why you think NI went for it?
Best Answer

Answer from DDMF (PluginDoctor)
""""" 'Plugindoctor is aware of the latency that is reported by plugins, and is
correcting for it in its phase display (not in the impulse response
display as I think it can be interesting to actually see the delayed
impulse response). ....
..... So all the phase response that you see is "real", i.e. it is either a
result of whatever filters are present in Reaktor, or the reported
latency by Reaktor is wrong (already one sample can lead to a visible
change in the phase response)......""""""
I uploaded the delays to fix this
https://www.nativeinstruments.com/en/reaktorcommunity/reaktoruserlibrary/entry/show/14419/
0
Answers

are you talking about this? is it linear phase? i'd often wondered if there were built in filters for the eventual downsampling back to base sample rate for output, but never looked into it
actually, its more common to use custom oversampling within core itself as multiple instances of a process running at regular sample rate, that way you can use whatever kind of filters you want
0 
if you search for oversampling in the user library, you will find a veritable goldmine
0 
Hey Andrew, thanks for your answer. "This" either in factorial or fixed mode, displays the characteristics of Linear phase oversampling (ie prering and also a tiny latency). however it warps the phase very much the same way minimum phase oversampling does, like for example most library solutions you referred to. it certainly is not clean LinearPhase oversampling. here's some graphs>
inout 1x impulse:
This is rougly what a lowpass impulse looks like 1x:
inout 4x impulse (notice prering in the filtering and the time shift). A filter without prering would give you ringing only to the right (after) the peak which is what you get when filtering manually at 1x (previous pic)
phase inout 1x
phase inout with the previews lopass
phase inout 4x with NI upsampling
Other VST minimum phase 4x
same other vst, Linear phase 4x
:)
0 
Your third image looks like some sort of windowed sinc function
https://ccrma.stanford.edu/~jos/pasp/Theory_Ideal_Bandlimited_Interpolation.html
1 
oh, ok... i see what you're saying.. it definitely looks like a linear phase impulse response.... and that should make the phase response linear... LOL. that's weird. i think you would need someone at NI who knows the backend to get an answer? because i certainly don't know what to make of that
0 
thank you :) great link!
0 
I see a linearphase kernel:
A symmetric or antisymmetric kernel is always linearphase.
0 
shouldn't the phase plot not look like this then, in that case?
0 
hmm, I though the same, but is that just what linear looks like when plotted on a log graph?
linear != constant?
0 
is that just what linear looks like when plotted on a log graph?
LOL 😅
There it is.
1 
pretty sure linear phase is supposed to look like this
so just to be clear, this is a logical paradox and a proper mystery we have here, correct?
0 
Nope, that would be phase delay, which is phase/w (with w=2pi*f/sr). Linear phase is a phase that is a linear function of frequency. In this case it's something that unwraps to 16w. We know that because it's a 31sample symmetric kernel, so it has 16 samples of phase delay. Group delay, which is the minus derivative of phase with respect to w, would be 16 too.
What you want with linear phase is a filter that moves all frequencies by the same time, in seconds, samples, etc. Constant phase is not constant time: a whole 100 hz cycle is longer than a whole 10 khz cycle. You want to delay high frequencies by more cycles than low frequencies to have them all delayed by the same time. More precisely, an amount of cycles proportional (linear) to frequency.
1 
this is very painful because its all well over my head and thus i don't know where to start with the proper questions.
when you say
Nope, that would be phase delay
you mean this measurement?
and if so, the above plot would be what one would expect from a linear phase filter?
and if so, does that mean that this next plot, shown below, would be indicative of something else?
i see you added this part:
What you want with linear phase is a filter that moves all frequencies by the same time, in seconds, samples, etc. Constant phase is not constant time: a whole 100 hz cycle is longer than a whole 10 khz cycle. You want to delay high frequencies by more cycles than low frequencies to have them all delayed by the same time. More precisely, an amount of cycles proportional (linear) to frequency.
which helps clear it up. i guess the remaing confusion would just be wondering what would be the difference between those two plots: if the top one was typical for a linear phase filter, what would the bottom one be?
0 
If there is latency/delay then ideally all phases should have the same time delay  if not, then there will phase cancellation etc.
higher frequencies take less time per cycle, and phase is measured in cycles, so we get that zigzag phase wrap as the phase per frequency rises in order to maintain a constant time delay. (I'm just properly grokking this properly myself in this context :) it's something I've kind of understood, but in a roundabout complexified* way, instead of the razor sharp simplicity of it  thanks Laureano)
The straight horizontal line is what you get when there is no time delay/latency  in that case, the phase doesn't need to change.
If there is a phase shift that is constant with frequency, surely there would be all sorts of horrible/cool phasing artefacts? like with a bode frequency shifter?
Maybe the 'problem' here is the 'other vst' is either not oversampling, or some settings are wrong on the analysis tool? Maybe the other vst has been intentionally set to have a constant phase shift, and has that option specifically in order to generate those phasing artefacts? or for some other technical process? or bugs!
*I'm amazed and delighted that complexified turned out to actually be a real bona fide word  yay!
2 
you mean this measurement?
No, I meant that what is constant (like, a flat line) for a linear phase system is phase delay, not phase. Phase is the argument of the Fourier transform, which corresponds to a position in the sinusoid's cycle. Phase is linear for a linear phase system, it's a linear function of frequency.
the above plot would be what one would expect from a linear phase filter?
In a log plot it's hard to discern. In a linear plot you see those lines are indeed straight diagonals. If they happen to get curvy somewhere, the system is not linear phase.
this next plot, shown below, would be indicative of something else?
It would indicate that the system does nothing with phase. I would say that excludes all things we normally call filters, but theoretically you can speak of zerophase filters. That would be any (symmetric) linearphase kernel which is shifted to have its center at time zero. It would be zerophase because the kernel is inphase at its center. Remember my phase plot before:
The function has terms of e^iwn, or z^n, with n from 0 to 32. So z^0, z^1, ...z^32. If I multiply all terms by z^16 (that is, I shift the whole kernel by 16 samples, to get z^16, ...z^0, ...z^16), the phase response is
noise around zero. What does it mean? Well, it's merely a change of viewpoint. Instead of starting to filter right now, I start to filter 16 samples in the past. Therefore, at time zero I'm inphase. But I can't start doing things in the past: a zerophase filter is noncausal. The viewpoint makes sense for an offline render: if you apply latency compensation to a linearphase filter so that the output stays aligned with the input instead of being shifted n samples forward, you could say your filter has been "zerophase". It was in the result, but not in the process you just shifted the whole thing back afterwards.
So, a possible answer to our riddle may be that we're measuring the change from input to output, and other plugins are latencycompensating their oversampling filters, while Reaktor is not.
1
Categories
 12.4K All Categories
 21 Welcome
 568 Hangout
 69 NI News
 274 Tech Talks
 1.3K Native Access
 5.8K Komplete
 766 Komplete General
 1.4K Komplete Kontrol
 2.1K Kontakt
 568 Reaktor
 187 Battery 4
 316 Guitar Rig & FX
 222 Massive X & Synths
 281 Other Software & Hardware
 2.6K Maschine
 24 Sampling Room
 3.1K Traktor
 2.9K Traktor Software & Hardware
 Check out everything you can do
 Create an account
 See member benefits
 Answer questions
 Ask the community
 See product news
 Connect with creators